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Abstract. We study the low-temperature properties ofS = 1 andS = 1/2 alternating spin
chains with antiferromagnetic nearest-neighbour exchange couplings using analytical techniques
as well as a quantum Monte Carlo method. The spin-wave approach predicts two different
low-lying excitations, which are gapped and gapless, respectively. The structure of low-lying
levels is also discussed using perturbation theory in terms of the strength of the Ising anisotropy.
These analytical findings are compared with the results of quantum Monte Carlo calculations,
and it turns out that spin-wave theory describes the present system well. We conclude that the
quantum ferrimagnetic chain exhibits both ferromagnetic and antiferromagnetic aspects.

1. Introduction

The low-temperature properties of low-dimensional quantum antiferromagnets have been
of great interest for many years, in particular since Haldane [1] made the prediction that
integer-spin and half-odd-integer-spin Heisenberg antiferromagnetic chains should behave
very differently. Now, on the basis of analytical methods and various numerical approaches,
it has become well accepted that the integer-spin chain is massive, whereas the half-odd-
integer-spin chain is massless. This also stimulated several attempts to investigate the
quantum behaviour of chains consisting of two types of spin. An integrable model of
this type was constructed by de Vega and Woynarovich [2], which allows us to guess
the essential consequences of chains being composed of spins of different magnitudesS.
Recently, several authors [3, 4] discussed in detail such a chain composed of spinsS = 1
and S = 1/2 as the simplest case. However, these integrable models usually include
complicated interactions, and very little is known about the pure Heisenberg model which
is supposed to describe real ferrimagnetic compounds [5].

In the following we therefore study theS = 1 and 1/2 Heisenberg antiferromagnetic
chain defined by the Hamiltonian

H = J
L∑
i=1

[
(Si · si )λ + (si · Si+1)λ

]
(1)

where(Si · sj )λ = λ(Sxi sxj + Syi syj ) + Szi szj , with Si andsi being theS = 1 andS = 1/2
spin operators, respectively, andL is the number of unit cells. We adopt periodic boundary
conditions, and investigate the properties of the ground state and of the low-lying excited
states by spin-wave theory, series expansion with regard to the Ising anisotropyλ, and a
quantum Monte Carlo (QMC) method.
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Basic predictions for the low-lying level structure can be made by applying the Lieb–
Mattis theorem [6] and the Goldstone theorem [7]. First we consider the ordering of the
energy levels. The A sublattice is defined by theS = 1 sites (the maximum spin isSA = L),
and the B sublattice is defined by the spin-1/2 sites (the maximum spin isSB = L/2). The
Hamiltonian (1) consists of intersublattice interactions only, which allows us to apply the
results of [6] to our system. The energy levels order in the following manner:

E(S + 1) > E(S) for all S > S
E(S) > E(S) for S < S.

Here S = |SA − SB | denotes the total spin of the ground state, which takes the value
S = L − L/2 = L/2 in our case. Therefore the ground-state degeneracy isL + 1.
Although the ground states have finite spinS, the following points show a contrast with
the usual behaviour of ferromagnets:

(i) the ground-state degeneracy of a ferromagnet is larger by a macroscopic amount;
(ii) due to quantum fluctuations, the ground state deviates from the ferrimagnetic Néel

state,|+1,−1/2,+1,−1/2, . . .〉.
Because each of the ground states of the chain breaks the rotational symmetry of the

Hamiltonian, we can apply the Goldstone theorem [7] to predict a gapless excitation. For
magnetizations lower thanL/2 the ferrimagnet is comparable to a ferromagnet, and therefore
this gapless excitation should belong to a branch of excitations of ferromagnetic character.

The paper is organized as follows. In the second section we present the spin-wave
approach for calculating the dispersion relations as well as the ground-state energy and the
ground-state correlation functions. In the following section we study the low-temperature
properties, employing a QMC method. The numerical data will be compared to the results
of the first section and to perturbation calculations. Conclusions will be given in the final
section.

2. Spin-wave theory

In this section the spin-wave theory (see e.g. [8]) is applied to our system in the large-S

limit. For this purpose the odd sites are assigned spinsgS and the even sites spinsS. To
discuss the case of our Hamiltonian (1) we useg = 2. We start from the fully ordered state
with Sztot = M = L/2, and use the following spin operators in the two sublattices in the
lowest order in 1/S:

sublattice A:Szn = gS − a†nan S+n =
√

2gSan (2)

sublattice B:szn = −S + b†nbn s+n =
√

2Sb†n. (3)

Here a†n, b
†
n are Bose operators. We expect the spin-wave theory to give qualitatively

correct results for the following reason: in the classical antiferromagnet the two Néel
states become disconnected by the transformation (2), (3), since the action of the transverse
Hamiltonian on one of the two Ńeel states does not lead to the other Néel state. However,
it is known that domain wall excitations, namely excitations connecting the two Néel states,
are very important for the spin-1/2 antiferromagnet. Spin-wave theory is inappropriate for
the spin-1/2 antiferromagnet, since domain wall excitations cannot be taken into account. In
the spin-1–spin-1/2 system the two Ńeel states are disconnected in principle, because they
belong to subspaces with different magnetizations. Thus a classical ground state including
quantum fluctuations should be qualitatively correct.
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In the limit S →∞ the interaction terms in the Bose Hamiltonian become negligible,
and we end up with the following expression for the Hamiltonian, bilinear in the Bose
operators:

HSW = −2gS2JL+ 2SJ
∑
k

[
gb
†
kbk + a†kak +

√
g cos(k/2)(a†kb

†
k + akbk)

]
(4)

where a†n = L−1/2∑
k eik(n−1/4)a

†
k and b†n = L−1/2∑

k e−ik(n+1/4)b
†
k. Here k is given as

k = 2πm/Na,m = −L/2+ 1, . . . , L/2, with a the lattice constant. We seta to unity in
the following. The Hamiltonian is straightforwardly diagonalized to

HSWT = E0+ 2SJ
∑
k

(ω−k α
†
kαk + ω+k β†kβk) (5)

where

ω±k =
1

2

(√
(g + 1)2− 4g cos2(k/2)± (g − 1)

)
(6)

E0 = JS
∑
k

[√
(1+ g)2− 4g cos2(k/2)− (1+ g)

]
− gJS2N (7)

and where the eigenvectors are determined by

α
†
k = cosh(ηk)a

†
k + sinh(ηk)bk β

†
k = sinh(ηk)ak + cosh(ηk)b

†
k (8)

tanh(2ηk) =
2
√
g

1+ g cos(k/2). (9)

The results from the spin-wave theory contain both ferromagnetic and antiferromagnetic
aspects. In the ferromagnetic branch (ω−k ) we obtain a gapless spin wave for which
M = L/2− 1. For small values of the wave vector the dispersion is

ω−k =
g

4(g − 1)
k2+ · · · .

The quadratic behaviour with wave vectork indicates the ferromagnetic character of this
mode. The antiferromagnetic spin wave withM = L/2+ 1 is gapped. The magnitude of
the gap is exactlyJ when we putg = 2, S = 1

2. This result will be compared to the result
of the QMC calculation to be presented in the next section. If we choose the spins such
that the spin magnitudes in the different sublattices are equal, i.e.g → 1, the gap of the
antiferromagnetic branch vanishes. Another interesting feature is the ground-state sublattice
magnetization as defined by

〈MA〉g.s. = L−
L∑
n=1

a†nan = L(1− τ) (10)

τ = 1

π

∫ π

0
dk sinh2(ηk) ≈ 0.305. (11)

Notice that the one-dimensional ferrimagnet has a finite spin reductionτ . This is due to
the factor 2

√
2/3 < 1, obtained forg = 2 in relation (9). In the usual antiferromagnet the

corresponding factor is 1, and leads to a diverging spin reduction (in 1D).
The ground-state energy per unit cell in the spin-wave approach is obtained as

E0/J = −5

2
L+ L

2π

∫ π

0
dk
√

9− 8 cos2(k/2) ≈ −1.4365L

(
S = 1

2
, g = 2

)
. (12)
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Furthermore, we studied the ground-state correlation functions for two sites withS = 1
for the ground state with magnetizationL/2, and obtained the following results:

〈SznSzn+r〉 = (1− τ)2+ f (r) (13)

〈S+n S−n+r〉 ∝
√
f (r) (14)

f (r) = 1

L2

∑
k,q

ei 2qr sinh2(ηk) cosh2(ηk+q). (15)

The asymptotic behaviour for the functionf (r) is calculated by taking the continuum limit
for the sum in equation (15). We observe asymptotical exponential decay with a correlation
length ξ , ξ−1 = 2 ln(2). So for the intrasublattice distancer > 2, the correlations have
decayed and the square of the spin reduction(1− τ)2 remains. From comparison with the
QMC results, it will be shown later that this is a qualitatively correct picture.

As a conclusion to this section, we discuss the case of strong alternation, a limit which
naturally reproduces the scenario as given above. If we introduceJ , the strength of the
interaction between the sites 2n and 2n+ 1, andδJ , that between the sites 2n− 1 and 2n,
the Lieb–Mattis theorem and the Goldstone theorem still hold. TheM = L/2 ground state
in the dimerized limitδ = 0 can be written as

|0〉 = |D+〉1|D+〉2 · · · |D+〉L
(Sn + sn)2|D+〉n = 1

2

(
1

2
+ 1

)
|D+〉n (Szn + szn)|D+〉n =

1

2
|D+〉n

|D+〉 = 1√
3
(|0,+1/2〉 −

√
2|+1,−1/2〉).

For valuesδ � 1, the system behaves like anS = 1
2 ferromagnet, with the doublets D+

and D−, the effective spin beingSeff = 1
2. A first-order perturbation calculation in terms

of the alternation parameterδ leads to a ground-state energy ofE0 = −L(1+ δ/9)+O(δ2).
Now a ferromagnetic spin wave can be constructed within the doublet subspace:

|q〉 = 1√
L

L∑
n=1

eiqn|D+〉1 · · · |D−〉n · · · |D+〉L. (16)

The dispersion up to the first order inδ is ω(q) = (4/9)δ(1−cos(q))+O(δ2). It is gapless
and proportional toq2 for small wavevectors as one would expect.

In addition to the ferromagnetic excitations, we can construct antiferromagnetic spin
waves, i.e. spin waves withSztot = L/2+1. Again we discuss the case of strong alternation,
and end up with

|q〉 = 1√
L

L∑
n=1

eiqn|D+〉1 · · · |Q3〉n · · · |D+〉L. (17)

Here |Q3〉 denotes the quartet with magnetization 3/2. The first-order dispersion is
ω(q) = 3/2+ δ(7/18− (2/3) cos(q))+O(δ2), and is gapped.

3. Numerical results

3.1. A brief account of the numerical procedure

In the following we employ a quantum Monte Carlo method based on the Suzuki–Trotter
decomposition [9] of checkerboard type [10]. Raw data are taken for a set of Trotter
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Figure 1. Size dependences of the ground-state energy in the subspaces withM = L/2 and
M = L/2− 1.
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Figure 2. Dependences of the ground-state energy on the Ising anisotropyλ obtained by a QMC
method (♦), and fourth-order (dotted line) and eighth-order (solid line) perturbation theory.

numbersn, and are extrapolated to then → ∞ limit with the parabolic fitting formula.
We carry out all of the calculations in certain subspaces with a fixed value of the total
magnetization. Since we treat the chains with periodic boundary conditions, not only the
Monte Carlo flips of local type but also the global flips along the chain direction are taken
into account in the numerical procedure. On the other hand, global flips along the Trotter
direction—which are fluctuations of the total magnetization—are not included, in order to
retain a good description of the ground-state properties. The quantum Monte Carlo algorithm
used to update the spin configuration is detailed elsewhere [11]. We have confirmed that
almost the same results are obtained at two temperatures,kBT/J = 0.04, 0.02, and thus we
regard these temperatures as low enough for successfully extracting the lowest-energy-state
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Figure 3. A snapshot of the transformed two-dimensional Ising system, where the horizontal
and the vertical lines denote the chain and the Trotter directions corresponding to space and time,
respectively, and ‘↑’, ‘ ↑’, ‘0’, ‘ ↓’, and ‘↓’ denote the spin projections+1,+1/2, 0,−1/2,−1.

properties. Here we show the data obtained forkBT/J = 0.02. The data precision is almost
four digits for the energy, and two digits for the spin correlations.

3.2. The low-energy structure

In figure 1 we plot the lowest energies per unit cell in the subspaces for which
M =∑i (S

z
i + szi ) = L/2, L/2− 1 as a function ofL. The coincidence of the sets of data is

simply a numerical demonstration of the above-mentioned Lieb–Mattis theorem—that is, the
(L/2)-multiplet structure of the ground state. The rapid convergence to the long-chain limit
suggests a rather small correlation length in this system, which will actually be observed
in the following. Within the present numerical precision, the ground-state energy in the
thermodynamic limit is estimated asEG = −1.455± 0.001. As we have observed in figure
1, even the ground-state energy of theL = 16 chain is already close to the thermodynamic
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Figure 4. Dependences of the excitation gapsEG(L/2− 1) − EG(L/2) (©) andEG(L/2+
1)−EG(L/2) (♦) on the Ising anisotropy obtained by a QMC method, where the results within
the fourth-order perturbation treatment are also shown (solid lines).

limit value. Thus we have plotted the quantum Monte Carlo data forL = 16.
Although the quantum Monte Carlo data as presented above are already conclusive in

themselves, we present an additional argument based on perturbation theory applied to the
Ising anisotropyλ. We compare in figure 2 the quantum Monte Carlo estimated ground-state
energies and the corresponding perturbation theory result:

−EG/L = 1+ λ
2

2
− λ

4

48
− 0.051 36λ6+ 0.028 09λ8+O(λ10) (18)

as a function ofλ. We find a fairly good agreement between the eighth-order perturbation
result and the QMC calculation. What should be emphasized is that the fourth-order calcul-
ation shows good agreement with the correct result. This fact gives us an idea of the spin
configuration in theM = L/2 ground state. All of the fluctuations introduced within the
fourth order are essentially classified into the following three types:

(a) two-site fluctuation: 1,−1/2, 1,−1/2, 0, 1/2︸ ︷︷ ︸, 1,−1/2, 1,−1/2, . . .

(b) three-site fluctuation: 1,−1/2, 1, 1/2,−1, 1/2︸ ︷︷ ︸, 1,−1/2, 1,−1/2, . . .

(c) four-site fluctuation: 1,−1/2, 0, 1/2, 0, 1/2︸ ︷︷ ︸, 1,−1/2, 1,−1/2, . . ..

We note that the formation energy of the defects of type (c) is not twice as much as that of
the defects of type (a), and therefore they should be distinguished. On the basis on these
fluctuations, we are led to discuss microscopic quantum fluctuations at the isotropic point
(λ = 1). We present in figure 3 a QMC snapshot from which we can extract an image
of quantum fluctuations to a certain extent. Here we show the snapshot atkBT/J = 0.02
for λ = 1.0, L = 32, andn = 20, where the horizontal and vertical lines denote the
chain and the Trotter directions corresponding to space and time, respectively. We find
everywhere local defects breaking the Néel order, whereas they are all identified with the
above-mentioned fluctuations. Thus we expect the fourth-order calculation to describe well
theM = L/2 ground state.
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Figure 5. The ground-state spin correlations between spinsS = 1 (a) and between spinsS = 1/2
(b) in the subspaces withM = L/2, L/2− 1, andL/2+ 1, for L = 16.

Next we discuss the lowest excited states for the ferromagnetic and the antiferromagnetic
branches. In the subspace withM = L/2− 1 we construct a magnon forλ = 0 by flipping
a spin-1:Sz = 1→ Sz = 0. Expanding this state and taking the limitk→ 0, we obtain the
lowest mode in this subspace. Such an expansion up to the fourth order is compared with
EG(L/2− 1) − EG(L/2) from the QMC calculation in figure 4. The perturbation result
gives reasonable results up toλ ≈ 0.8. A comparison of these suggests that thek = 0
magnon condenses into the ground state withM = L/2− 1 at the isotropic point.

The antiferromagnetic magnon is constructed by flipping a spin-1/2 up. Again the
perturbation result and the QMC data forEG(L/2+1)−EG(L/2) are illustrated in figure 4.
Here the validity for the fourth-order expansion only holds up toλ ≈ 0.4. From the QMC
calculation we obtain a gap of1/J = 1.767± 0.003. Here a somewhat larger uncertainty,
rather than that for the ground-state energy, mainly arises from the Monte Carlo estimate
in the subspace withM = L/2+ 1. This value is much bigger than the prediction of the
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spin-wave theory:1 = J .
We conclude this section by pointing out that the quantum behaviour of the spin-1–spin-

1/2 system results in an enhancement of the gap. From figure 4 we observe that the pure
Ising energy of 2J is just lowered by a small amount when moving to the isotropic point.

3.3. Spin correlations

We show in figure 5 the spin-correlation functions for spins of the same type for the
lowest-energy states in the subspaces withM = L/2− 1, L/2, L/2+ 1. We note that the
self-correlation of spin-1 deviates from 2/3 because of the multiplet structure of the ground
state. In comparison with the spin correlations forM = L/2, those forM = L/2− 1
are significantly reduced—rather than those forM = L/2+ 1 as in the case of spin-1,
and vice versa in the case of spin-1/2. This is readily understood on considering that
the ferromagnetic and the antiferromagnetic magnons, which exist in the subspaces with
M = L/2 − 1 andM = L/2 + 1, originate from the spin flips in theS = 1 and the
S = 1

2 sublattices, respectively. Those excitations are expected to reduce the ferromagnetic
correlations between spins withS = 1 and spins withS = 1

2. We note that in the
thermodynamic limit, both spin correlations forM = L/2− 1 andM = L/2+ 1 should
coincide with those forM = L/2. Nevertheless, figure 5 is still useful because it suggests
to a certain extent the thermodynamic limit spin correlations in the subspaces with magnons
of finite density.

In the above sense, let us now concentrate on the subspace withM = L/2. We have
already confirmed that the spin-wave theory gives the asymptotic exponential decay of the
spin correlations, where the correlation length is estimated to be less than unity. We here
observe so rapid a decay of the correlations that an estimate of the correlation length is
beyond the present numerical precision. However, careful observation of figure 5 shows us
that the correlations between spinsS = 1

2 are a little bit less rapid than those between spins
S = 1. Spin-wave theory cannot reproduce this feature, because the decay is determined by
the functionf (r) in equation (15) for both sublattices. We further point out that the Monte
Carlo calculation gives the spin reductionτ as τ ' 0.21, which is somewhat smaller than
the spin-wave theory result. Therefore the spin-wave theory cannot quantitatively describe
the quantum fluctuations.

4. Conclusion

We have calculated ground-state properties and low-lying excited states for an alternating
ferrimagnetic spin chain with spinsS = 1 and S = 1

2. The ground state is a spin
S = L/2 multiplet. The model consists of a ferromagnetic and an antiferromagnetic branch
corresponding to magnetizationsM < L/2 andM > L/2, respectively. The ferromagnetic
branch has gapless excitations with dispersionsω ∝ k2, k → 0, according to spin-wave
theory. The antiferromagnetic branch withM = L/2+ 1 shows a gapped spin wave with
1/J = 1.767± 0.003. Both branches have longitudinal correlation functions consisting of
a constant (the square of the spin reduction) plus strong exponential decay, and therefore
both branches show long-range order. The manifestation of quantum behaviour lies in the
following points:

(i) the gap for theM = L/2+ 1 excitation is enhanced compared to that of the spin-
wave theory;
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(ii) the L/2 ground state deviates from the Néel state owing to quantum fluctuations;
and

(iii) there is an indication that the correlation length is larger in theS = 1/2 sublattice
than in theS = 1 sublattice.

In order to study the mechanism for the gap formation in detail we have to investigate the
perturbation theory to higher order. This investigation is under way, as is the construction
of matrix product states as variational ground states forM = L/2 [12]. The construction of
these matrices can be based on the fact that unit cells with magnetization−3/2 show
up rather rarely in figure 3. Therefore the system exhibits a tendency towards weak
ferromagnetism similar to the one discussed by Niggemann and Zittartz [13] inS = 3/2
chains with matrix product ground states.
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